West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism.
نویسندگان
چکیده
Flaviviruses encode a single methyltransferase domain that sequentially catalyzes two methylations of the viral RNA cap, GpppA-RNA-->m(7)GpppA-RNA-->m(7)GpppAm-RNA, by using S-adenosyl-l-methionine (SAM) as a methyl donor. Crystal structures of flavivirus methyltransferases exhibit distinct binding sites for SAM, GTP, and RNA molecules. Biochemical analysis of West Nile virus methyltransferase shows that the single SAM-binding site donates methyl groups to both N7 and 2'-O positions of the viral RNA cap, the GTP-binding pocket functions only during the 2'-O methylation, and two distinct sets of amino acids in the RNA-binding site are required for the N7 and 2'-O methylations. These results demonstrate that flavivirus methyltransferase catalyzes two cap methylations through a substrate-repositioning mechanism. In this mechanism, guanine N7 of substrate GpppA-RNA is first positioned to SAM to generate m(7)GpppA-RNA, after which the m(7)G moiety is repositioned to the GTP-binding pocket to register the 2'-OH of the adenosine with SAM, generating m(7)GpppAm-RNA. Because N7 cap methylation is essential for viral replication, inhibitors designed to block the pocket identified for the N7 cap methylation could be developed for flavivirus therapy.
منابع مشابه
West Nile Virus Methyltransferase catalyzes Two Methylations of the Viral RNA Cap 1 through a Substrate Repositioning Mechanism
through a Substrate Repositioning Mechanism 2 3 Hongping Dong, Suping Ren, Bo Zhang, Yangsheng Zhou, Francesc Puig-Basagoiti, 4 Hongmin Li, and Pei-Yong Shi 5 6 Wadsworth Center, New York State Department of Health, College of Life Science, Nanjing 7 Normal University, P. R. China, and Department of Biomedical Sciences, School of Public 8 Health, State University of New York, Albany, New York 1...
متن کاملGenetic interactions among the West Nile virus methyltransferase, the RNA-dependent RNA polymerase, and the 5' stem-loop of genomic RNA.
Flavivirus methyltransferase catalyzes both guanine N7 and ribose 2'-OH methylations of the viral RNA cap (GpppA-RNA-->m(7)GpppAm-RNA). The methyltransferase is physically linked to an RNA-dependent RNA polymerase (RdRp) in the flaviviral NS5 protein. Here, we report genetic interactions of West Nile virus (WNV) methyltransferase with the RdRp and the 5'-terminal stem-loop of viral genomic RNA....
متن کاملStructure and function of flavivirus NS5 methyltransferase.
The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially gener...
متن کاملDistinct RNA elements confer specificity to flavivirus RNA cap methylation events.
The 5' end of the flavivirus plus-sense RNA genome contains a type 1 cap (m(7)GpppAmG), followed by a conserved stem-loop structure. We report that nonstructural protein 5 (NS5) from four serocomplexes of flaviviruses specifically methylates the cap through recognition of the 5' terminus of viral RNA. Distinct RNA elements are required for the methylations at guanine N-7 on the cap and ribose 2...
متن کاملStructural and functional analyses of a conserved hydrophobic pocket of flavivirus methyltransferase.
The flavivirus methyltransferase (MTase) sequentially methylates the N7 and 2'-O positions of the viral RNA cap (GpppA-RNA → m(7)GpppA-RNA → m(7)GpppAm-RNA), using S-adenosyl-l-methionine (AdoMet) as a methyl donor. We report here that sinefungin (SIN), an AdoMet analog, inhibits several flaviviruses through suppression of viral MTase. The crystal structure of West Nile virus MTase in complex w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 82 9 شماره
صفحات -
تاریخ انتشار 2008